Projects
Alejandro Aballay's lab has a broad research program encompassing genetics, functional genomics and neurobiological approaches to study mechanisms involved in the control of immune responses against microbial pathogens. Immune activation needs to be fine-tuned since deficient or excessive inflammation can lead to cancer or other conditions such as Crohn’s disease, rheumatoid arthritis, atherosclerosis, diabetes and Alzheimer’s disease.
- Neuronal circuits involved in the control of immune homeostasis.
- Receptors involved in pathogen recognition.
- Signaling molecules involved in the control of immune homeostasis.
- Neural responses to infections such as pathogen-induced neurodegeneration.
- Molecular pathways involved in the control of recovery from bacterial infections.
Studies are based on the general hypothesis that immune pathways are regulated at the cell-autonomous level and, by the nervous system, at the cell non-autonomous level. The lab takes advantage of the simple and well-studied nervous and immune systems of C. elegans to develop a whole-animal high-throughput system for chemical and genetic screens for novel immunomodulators. They study the extent to which the basic cellular mechanisms identified in analyzing the role of selected genes and chemical compounds in mammalian stems.
The complex and tractable C. elegans system is excellent to study all aspects of the molecular basis of host-pathogen interactions. From the perspective of the pathogen, the experimental advantage of using C. elegans as a host is that thousands of bacterial clones from a mutagenized library can be individually screened for avirulent mutants on separate Petri plates seeded with C. elegans. The advantages of using C. elegans to study host responses to pathogen attack are the extensive genetic and genomic resources available and the relative ease of identifying C. elegans mutants that exhibit altered susceptibility to pathogen attack.
Related information
Virulence Profile on Alejandro Aballay, Ph.d.
Virulence 4:7, 1–3; October 1, 2013; © 2013 Landes Bioscience
At the intersection of the nervous system and innate immunity